
1

PostgreSQL at
GitLab.com

Jose Cores Finotto, Staff Database Reliability Engineer, Infrastructure

2

Speaker

● My name is Jose Cores Finotto I work
with the Infrastructure team at
Gitlab.

● I have been a part of the Gitlab team
since September 2018.

● Background in large organizations
with extensive experience in
Infrastructure, especially in
relational databases.

3

Agenda

● Gitlab

● Team

● Architecture

● Problems and Goals

● Pgbouncer

● Upgrades

● Postgres Checkup

4

Gitlab Values

1 2 3 4 5 6

Work asynchronously
with fully remote
workforce (org)

Use GitLab to build
GitLab, there’s an Issue
and/or Merge Request
for everything

Collaboration Results

Track outcomes,
not hours

Straightforward
solutions win.
Complexity slows
cycle time.

Efficiency

Remote-only tends toward
global diversity, but we still
have a ways to go.

Hire those who add to culture,
not those who fit with it. We
want cultural diversity
instead of cultural conformity.

Diversity

Minimum Viable
Change (MVC) if the
change is better than
the existing solution,
ship it.

Iteration

Everything at GitLab
is public by default:
Strategy, Roadmap,
Quarterly Goals,
Handbook, and Issue
Trackers

Transparency

https://about.gitlab.com/company/team/
https://about.gitlab.com/company/team/
https://about.gitlab.com/company/team/org-chart/
https://about.gitlab.com/strategy/
https://about.gitlab.com/direction/
https://about.gitlab.com/okrs/
https://about.gitlab.com/handbook
https://gitlab.com/gitlab-org/gitlab-ce/issues?scope=all&utf8=%E2%9C%93&state=opened
https://gitlab.com/gitlab-org/gitlab-ce/issues?scope=all&utf8=%E2%9C%93&state=opened

5

GitLab.com in numbers:

We have a hosted version of Gitlab:

● Over 25 million daily git pull operations.

● Upwards of 3K requests/second.

● More than 4k git requests per second.

● 650.000 git pushes a day.

● 40k to 60k transactions per second on the database

● 8 database replicas

● Database size : 5 TiB

6

The team

What is GitLab?

I have the pleasure of collaborating with 2 companies with extensive technical knowledge :

● OnGres - founded by Álvaro Hernández.

● Postgres.ai - founded by Nikolay Samokhvalov.

● And the support of the SRE team.

https://ongres.com
https://postgres.ai

7

Projects and Issues

● PGBouncer saturation issue

● Delayed Replica

● Replicas without traffic

● Consul Setup

● Postgres-Checkup : performance on demand!

● Joe bot

8

PGBouncer Traffic - Request per second

9

PGBouncer Saturation

10

PGBouncer Architecture in the beginning of 2019

11

PGBouncer Pool Changes

Pool sizes Before :

Sync : 70

Async : 80

Geo : 10

Pool sizes After :

Read Write :
Sync 50
Async : 33
Geo : 1

Read only :

Sync : 40
Async : 2
GEO : 1

12

PGBouncer Read Only Changes

● The application had a limit of one port for pgbouncer host.

● The engineering team added support for more ports.

● Initially, we added one extra pgbouncer per read-only replica.

● Later on, we added a third instance of pgbouncer per read-only replica.

● We rolled out the instances and later we added them to the list of
pgbouncers that are available. We use consul service for this process.

● Our performance problems with the read only databases was resolved.

13

PGBouncer Read Write Changes

● Our load balancer strategy wasn’t performing as expected.

● We noticed that the traffic was pretty different from the Async and Sync traffic. And
the shared pools were affecting the performance.

● We decided to split the traffic between Async and Sync type of sessions.

● The easiest way to implement a better load balancing was by adding an extra ILB
(Internal Load Balancer).

● and split the traffic in 3 nodes for each type of traffic.

● We rolled out the new ILB, and the extra pgbouncer nodes. Adding the new ILB to
be used by the application, and the new nodes to the Sync ILB.

14

PGBouncer Architecture in the end of 2019

15

Delayed Replica

● We have a delayed replica that has the WALs being applied with
a 12-hour delay.

● Our Intention here is to have a point to recover in case of
accidental deletes, or the rollout of some features that caused
some damage.

● This replica saved us several times.

16

Replicas without traffic

● We added the following 2 tags at the patroni config on 2 database
read-only replicas :

tags:
 nofailover: true
 noloadbalance: true

● With these config nodes will not receive traffic and they are not
candidates to become the primary.

What is the reason for it?
● We have these replicas up to date, and if any node fails, we have a

fast replacement node ready.
● In case of a replica failure, we needed 4 hours to recreate a new

node, and we faced a degraded performance till the replica is back.

17

Consul Setup

● After facing several failovers, due to possible networks glitches or
hardware issues, we focused on making our consul setup more resilient :

● Adding in the consul/patroni setup:
- checks[]
- Raising the parameter : retry_timeout to 60.

● This change avoids the execution of Serf checks and raises the amount of
time Patroni waits before restarting Postgres (in case of network failure), to
avoid restarting the database in short networks glitches.

● It is important to note that Patroni developers are removing Serf checks by
default (see this issue)

https://www.consul.io/intro/vs/serf.html
https://github.com/zalando/patroni/pull/1364

18

Postgres-checkup

● 28 reports, checking various aspects of Postgres production database health and
performing detailed SQL workload analysis.

● Reports contain 3 detailed parts: observations, conclusions, and
recommendations.

● Very lightweight checks, unobtrusive activities working well under heavy load, in
large databases. Does not require any setup on the servers.

● Multi-node analysis: the master is checked together with its replicas.

Nikolay and his team develop postgres-checkup
(https://gitlab.com/postgres-ai/postgres-checkup) -- a tool for
automated health-checks of Postgres databases, that
contains:

https://gitlab.com/postgres-ai/postgres-checkup

19

Postgres-checkup

● GitLab.com database is checked twice per week. Some of the benefits are:

○ SQL workload analysis
○ query optimization is now a routine, periodical process.
○ The control over table and index bloat is established.
○ control over unused and redundant indexes.
○ Growth trend analysis is simplified.
○ Some old tables still use int4 primary keys, and postgres-checkup helps to control

the ID values growth.
○ We now have a history of actual settings across all Postgres nodes, helpful for

troubleshooting of various issues.

20

Postgres-checkup

21

Postgres-checkup

22

Joe bot

Postgres.ai's primary focus is building non-production environments to allow rapid
development and testing processes.

● The main tool is called Database Lab (https://gitlab.com/postgres-ai/database-lab).
It allows super-fast cloning of large databases:

● GitLab.com database, currently being 5 TiB in size, is cloned in less than 2
seconds.

● As a result, engineers get full-sized short-lived database copies (called "local thin
clones") which are ready for any experiments such as verifying index ideas, SQL
performance troubleshooting, or preparing database changes.

https://gitlab.com/postgres-ai/database-lab

23

Joe bot

● On top of Database Lab works bot Joe, an SQL optimization assistant
(https://github.com/postgres-ai/joe).

● It lives in our Slack channel, #database-lab, where more than 70
engineers use it to:

● troubleshoot SQL query performance

● get optimization insights

● verify various optimization ideas (such as new indexes).

https://github.com/postgres-ai/joe

24

Joe bot

It is surprisingly simple:

● An engineer provides an SQL to Joe.

● Joe launches a session, based on local thin clones provided by
Database Lab.

● Independent Postgres server working on the thin clone is used to
get quick plan using EXPLAIN and then full execution plan using
EXPLAIN (BUFFERS, ANALYZE), with actual numbers such as
timing and buffer pool usage.

● The engineer gets the EXPLAIN ANALYZE details, with
performance summary and recommendations.

25

Joe bot

● On this independent database clone, the query is executed and
EXPLAIN information is provided, with actual numbers such as
timing and buffer pool usage.

● The engineer gets the EXPLAIN ANALYZE details, with
performance summary and recommendations. More about Joe
bot in GitLab:

https://gitlab.com/gitlab-com/www-gitlab-com/merge_requests/24
156/

https://gitlab.com/gitlab-com/www-gitlab-com/merge_requests/24156
https://gitlab.com/gitlab-com/www-gitlab-com/merge_requests/24156

26

SQL optimization lifecycle

27

Contribute

